Code: 17MEMD2T1

I M.Tech - II Semester - Regular/Supplementary Examinations OCTOBER - 2020

MECHANISM DESIGN AND SYNTHESIS (MACHINE DESIGN)

Duration: 3 hours

Max Marks: 60
Answer the following questions

1. a) Calculate the degrees of the freedom for the following.

$$
10 \mathrm{M}
$$

(a)

(b)

(c)

(e)
b) What is Kutzback's criterion for degree of freedom of plane mechanisms? In what way Gruebler's Criterion is different from it?

5 M
(OR)
2. a) Describe various inversions of single and double slider crank chain mechanisms giving suitable examples. 10 M
b) In four bar mechanism, L_{1} and L_{3} represent the lengths of fixed link and the coupler. L_{2} and L_{4} represent the lengths of the other two links (cranks). The table below gives five sets of link dimensions (in mm). What is the resulting mechanism for each set?

Set	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~L}_{4}$
A	500	20	150	300
B	500	180	20	200
C	20	300	400	200
D	200	20	150	70
E	60	200	180	80

3. Design a four bar linkage to move link $C D$ from $C_{1} D_{1}$ to $\mathrm{C}_{2} \mathrm{D}_{2}$ by graphical linkage synthesis.

(OR)
4. The linkage shown in figure, calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank $\mathrm{O}_{2} \mathrm{~A}$ for one revolution.

5. Design a four bar linkage which will move a line on its coupler link such that a point P on that line will be first at P_{1} and later at P_{2} and will also rotate the line through an angle δ_{2} between those two precision positions.

(OR)
6. Design a four bar linkage to move the link CD from the position $\mathrm{C}_{1} \mathrm{D}_{1}$ to $\mathrm{C}_{2} \mathrm{D}_{2}$ and then to position $\mathrm{C}_{3} \mathrm{D}_{3}$. Use different moving pivots than CD. Find the fixed pivot locations.

Page 3 of 4
7. a) PQRS is a four bar chain with link PS fixed. The lengths of links are $\mathrm{PQ}=62.5 \mathrm{~mm}, \mathrm{QR}=175 \mathrm{~mm}, \mathrm{RS}=112.5 \mathrm{~mm}$ and PS $=200 \mathrm{~mm}$. The crank PQ rotates at $10 \mathrm{rad} / \mathrm{sec}$ clockwise. Draw velocity and acceleration diagram, when angle $\mathrm{QPS}=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links $Q R$ and RS. Choose a suitable scale for configuration of velocity and acceleration diagrams.
b) Give the classification of various cam-follower systems.

5 M

(OR)

8. In the steam engine mechanism shown in below figure, the crank $A B$ rotates at 200rpm clockwise. Find the velocities of C, D, E, F and G and acceleration of slider at C. Here lengths of $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=48 \mathrm{~cm}, \mathrm{CD}=18 \mathrm{~cm}, \mathrm{DE}=36 \mathrm{~cm}$, $\mathrm{EF}=12 \mathrm{~cm}$ and $\mathrm{FG}=36 \mathrm{~cm}$.

