Code: 17MEMD2T1

I M.Tech - II Semester – Regular/Supplementary Examinations OCTOBER - 2020

MECHANISM DESIGN AND SYNTHESIS (MACHINE DESIGN)

Duration: 3 hours Max Marks: 60

Answer the following questions

1. a) Calculate the degrees of the freedom for the following.

b) What is Kutzback's criterion for degree of freedom of plane mechanisms? In what way Gruebler's Criterion is different from it?

5 M

(OR)

- 2. a) Describe various inversions of single and double slider crank chain mechanisms giving suitable examples. 10 M
 - b) In four bar mechanism, L₁ and L₃ represent the lengths of fixed link and the coupler. L₂ and L₄ represent the lengths of the other two links (cranks). The table below gives five sets of link dimensions (in mm). What is the resulting mechanism for each set?

 5 M

Set	L_1	L_2	L_3	L_4
A	500	20	150	300
В	500	180	20	200
С	20	300	400	200
D	200	20	150	70
Е	60	200	180	80

Design a four bar linkage to move link CD from C₁D₁ to
 C₂D₂ by graphical linkage synthesis.

4. The linkage shown in figure, calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O₂A for one revolution.

15 M

5. Design a four bar linkage which will move a line on its coupler link such that a point P on that line will be first at P_1 and later at P_2 and will also rotate the line through an angle δ_2 between those two precision positions.

6. Design a four bar linkage to move the link CD from the position C₁D₁ to C₂D₂ and then to position C₃D₃. Use different moving pivots than CD. Find the fixed pivot locations.

Page 3 of 4

- 7. a) PQRS is a four bar chain with link PS fixed. The lengths of links are PQ = 62.5mm, QR = 175mm, RS = 112.5mm and PS = 200mm. The crank PQ rotates at 10 rad/sec clockwise. Draw velocity and acceleration diagram, when angle QPS = 60° and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links QR and RS. Choose a suitable scale for configuration of velocity and acceleration diagrams.
 - b) Give the classification of various cam-follower systems.

5 M

(OR)

8. In the steam engine mechanism shown in below figure, the crank AB rotates at 200rpm clockwise. Find the velocities of C, D, E, F and G and acceleration of slider at C. Here lengths of AB = 12 cm, BC = 48cm, CD = 18cm, DE = 36cm, EF = 12cm and FG = 36cm.

